84 research outputs found

    Human T-cell leukemia virus type 1: replication, proliferation and propagation by Tax and HTLV-1 bZIP factor.

    Get PDF
    Human T-cell leukemia virus type 1 (HTLV-1) spreads primarily by cell-to-cell transmission. Therefore, HTLV-1 promotes the proliferation of infected cells to facilitate transmission. In HTLV-1 infected individuals, the provirus is present mainly in effector/memory T cells and Foxp3+ T cells. Recent study suggests that this immunophenotype is acquired by infected cells through the function of HTLV-1 bZIP factor (HBZ). Tax, which is encoded by the plus strand, is crucial for viral replication and de novo infection, while HBZ, encoded by the minus strand, is important for proliferation of infected cells. Importantly, HBZ and Tax have opposing functions in most transcription pathways. HBZ and Tax cooperate in elaborate ways to permit viral replication, proliferation of infected cells and propagation of the virus

    ATF3, an HTLV-1 bZip factor binding protein, promotes proliferation of adult T-cell leukemia cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adult T-cell leukemia (ATL) is an aggressive malignancy of CD4<sup>+ </sup>T-cells caused by human T-cell leukemia virus type 1 (HTLV-1). The <it>HTLV-1 bZIP factor </it>(<it>HBZ</it>) gene, which is encoded by the minus strand of the viral genome, is expressed as an antisense transcript in all ATL cases. By using yeast two-hybrid screening, we identified activating transcription factor 3 (ATF3) as an HBZ-interacting protein. ATF3 has been reported to be expressed in ATL cells, but its biological significance is not known.</p> <p>Results</p> <p>Immunoprecipitation analysis confirmed that ATF3 interacts with HBZ. Expression of ATF3 was upregulated in ATL cell lines and fresh ATL cases. Reporter assay revealed that ATF3 could interfere with the HTLV-1 Tax's transactivation of the 5' proviral long terminal repeat (LTR), doing so by affecting the ATF/CRE site, as well as HBZ. Suppressing ATF3 expression inhibited proliferation and strongly reduced the viability of ATL cells. As mechanisms of growth-promoting activity of ATF3, comparative expression profiling of ATF3 knockdown cells identified candidate genes that are critical for the cell cycle and cell death, including cell division cycle 2 (CDC2) and cyclin E2. ATF3 also enhanced p53 transcriptional activity, but this activity was suppressed by HBZ.</p> <p>Conclusions</p> <p>Thus, ATF3 expression has positive and negative effects on the proliferation and survival of ATL cells. HBZ impedes its negative effects, leaving ATF3 to promote proliferation of ATL cells via mechanisms including upregulation of CDC2 and cyclin E2. Both HBZ and ATF3 suppress Tax expression, which enables infected cells to escape the host immune system.</p

    Systematic clustering algorithm for chromatin accessibility data and its application to hematopoietic cells

    Full text link
    The huge amount of data acquired by high-throughput sequencing requires data reduction for effective analysis. Here we give a clustering algorithm for genome-wide open chromatin data using a new data reduction method. This method regards the genome as a string of 11s and 00s based on a set of peaks and calculates the Hamming distances between the strings. This algorithm with the systematically optimized set of peaks enables us to quantitatively evaluate differences between samples of hematopoietic cells and classify cell types, potentially leading to a better understanding of leukemia pathogenesis.Comment: 24 pages, 17 figure

    IL-2/IL-2 Receptor Pathway Plays a Crucial Role in the Growth and Malignant Transformation of HTLV-1-Infected T Cells to Develop Adult T-Cell Leukemia

    Get PDF
    T cells infected with human T-cell leukemia virus type 1 (HTLV-1) transform into malignant/leukemic cells and develop adult T-cell leukemia (ATL) after a long latency period. The tax (transactivator from the X-gene region) and HBZ (HTLV-1 bZIP factor) genes of HTLV-1 play crucial roles in the development of ATL. The process and mechanism by which HTLV-1-infected T cells acquire malignancy and develop ATL remain to be elucidated. Constitutive expression of interleukin-2 (IL-2) receptor α-chain (IL-2Rα/CD25), induced by the tax and HBZ genes of HTLV-1, on ATL cells implicates the involvement of IL-2/IL-2R pathway in the growth and development of ATL cells in vivo. However, the leukemic cells in the majority of ATL patients appeared unresponsive to IL-2, raising controversies on the role of this pathway for the growth of ATL cells in vivo. Here, we report the establishment of 32 IL-2-dependent T-cell lines infected with HTLV-1 from 26 ATL patients, including eight leukemic cell lines derived from five ATL patients, while no T-cell lines were established without IL-2. We have shown that the IL-2-dependent ATL cell lines evolved into IL-2-independent/-unresponsive growth phase, resembling ATL cells in vivo. Moreover, the IL-2-dependent non-leukemic T-cell lines infected with HTLV-1 acquired IL-2-independency and turned into tumor-producing cancer cells as with the ATL cell lines. HTLV-1-infected T cells in vivo could survive and proliferate depending on IL-2 that was produced in vivo by the HTLV-1-infected T cells of ATL patients and patients with HTLV-1-associated diseases and, acts as a physiological molecule to regulate T-cell growth. These results suggest that ATL cells develop among the HTLV-1-infected T cells growing dependently on IL-2 and that most of the circulating ATL cells progressed to become less responsive to IL-2, acquiring the ability to proliferate without IL-2

    Memet Fuat, Piraye ve Nazım

    Get PDF
    Taha Toros Arşivi, Dosya Adı: Nazım Hikmetİstanbul Kalkınma Ajansı (TR10/14/YEN/0033) İstanbul Development Agency (TR10/14/YEN/0033

    Enhancement of anti-STLV-1/HTLV-1 immune responses through multimodal effects of anti-CCR4 antibody.

    Get PDF
    Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia and inflammatory diseases. Because anti-HTLV-1 immune responses are critical for suppressing infected cells, enhancing cellular immunity is beneficial for the treatment of HTLV-1-associated diseases. Using simian T-cell leukemia virus type 1 (STLV-1) infected Japanese macaques, we analyzed the immune responses to viral antigens and the dynamics of virus-infected cells. The chemokine receptor CCR4 is expressed on STLV-1 infected cells, and administration of humanized monoclonal antibody to CCR4, mogamulizumab, dramatically decreased the number of STLV-1-infected cells in vivo. Concurrently, mogamulizumab treatment enhanced STLV-1 specific CD4[+] and CD8[+] T cell responses by simultaneously targeting CCR4[+] effector regulatory T (Treg) cells and infected cells. Mogamulizumab promoted the phagocytosis of CCR4[+] infected cells by macrophages, which likely enhanced antigen presentation. Vaccination with recombinant vaccinia virus (rVV) expressing viral antigens suppressed the proviral load and the number of Tax-expressing cells. Enhanced T-cell responses were also observed in some ATL patients who were treated with mogamulizumab. This study shows that mogamulizumab works not only by killing CCR4[+] infected cells directly, but also by enhancing T cell responses by increasing the phagocytosis of infected cells by antigen-presenting cells and suppressing CCR4[+] effector Treg cells

    Integrated genetic and clinical prognostic factors for aggressive adult T-cell leukemia/lymphoma

    Get PDF
    成人T細胞白血病リンパ腫(ATL)におけるゲノム情報と臨床情報を統合したリスクモデルを確立 --ATLの個別化医療を推進--. 京都大学プレスリリース. 2023-04-10.The prognosis of aggressive adult T-cell leukemia/lymphoma (ATL) is poor, and allogeneic hematopoietic stem-cell transplantation (allo-HSCT) is a curative treatment. To identify favorable prognostic patients after intensive chemotherapy, and who therefore might not require upfront allo-HSCT, we aimed to improve risk stratification of aggressive ATL patients aged <70 years. The clinical risk factors and genetic mutations were incorporated into risk modeling for overall survival (OS). We generated the m7-ATLPI, a clinicogenetic risk model for OS, that included the ATL prognostic index (PI) (ATL-PI) risk category, and non-silent mutations in seven genes, namely TP53, IRF4, RHOA, PRKCB, CARD11, CCR7, and GATA3. In the training cohort of 99 patients, the m7-ATLPI identified a low-, intermediate-, and high-risk group with 2-year OS of 100%, 43%, and 19%, respectively (hazard ratio [HR] 5.46, p < 0.0001). The m7-ATLPI achieved superior risk stratification compared to the current ATL-PI (C-index 0.92 vs. 0.85, respectively). In the validation cohort of 84 patients, the m7-ATLPI defined low-, intermediate-, and high-risk groups with a 2-year OS of 81%, 30%, and 0%, respectively (HR 2.33, p = 0.0094), and the model again outperformed the ATL-PI (C-index 0.72 vs. 0.70, respectively). The simplified m7-ATLPI, which is easier to use in clinical practice, achieved superior risk stratification compared to the ATL-PI, as did the original m7-ATLPI; the simplified version was calculated by summing the following: high-risk ATL-PI category (+10), low-risk ATL-PI category (−4), and non-silent mutations in TP53 (+4), IRF4 (+3), RHOA (+1), PRKCB (+1), CARD11 (+0.5), CCR7 (−2), and GATA3 (−3)
    corecore